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Abstract This review focuses on the use of inorganic

oxide semiconductors for the photoassisted generation of

hydrogen from water. Representative studies spanning

approximately three decades are included in this review.

The topics covered include a discussion of the types of

water photosplitting approaches, an ideal photoelectrolysis

system, an examination of why oxide semiconductors are

attractive for this application, a review of both classical and

more recent studies on titanium dioxide, tungsten trioxide,

and other binary metal oxides, perovskites and other ternary

oxides, tantalates and niobates, miscellaneous multinary

oxides, semiconductor alloys and mixed semiconductor

composites, and twin-photosystem configurations for water

splitting.

Keywords Photoelectrolysis � Water splitting � Solar

energy

1 Introduction and scope

This review article explores the possibility of using sun-

light in conjunction with oxide semiconductor/solution

interfaces for the production of hydrogen from water. The

underlying principles of solar energy conversion using

semiconductor/electrolyte interfaces have been discussed

in several review articles, book chapters and books [1–22]

and will not be repeated here. This field of ‘‘photoelect-

rochemistry’’ had its early origins in attempts to use

inorganic semiconductor/electrolyte interfaces in electronic

devices [23–28]. Subsequently, it was found in ca. 1970

that an electrochemical cell made from a n-TiO2

photoanode and a Pt counterelectrode evolved H2 and O2

from water under UV irradiation or sunlight [29–33]. A

flurry of activity ensued in the 1970s and 1980s on the

photoelectrolysis of water; indeed, attempts to split water

using sunlight and inorganic semiconductor(s) have

continued in unabated manner to the present time.

2 Types of approaches

A bewildering array of terms have been deployed in this

field; thus, a few clarifying remarks appear to be in order.

The term ‘‘photoelectrochemical’’ refers to any scenario

wherein light is used to augment an electrochemical process.

This process could be either ‘‘uphill’’ (Gibbs free energy

charge being positive) or ‘‘downhill’’ (negative DG) in a

thermodynamic sense. In the former case, the process is

called ‘‘photosynthetic’’ (the reaction H2O fi H2 + 1/2 O2

being an example) while the latter would be a photocatalytic

process (e.g., the oxidation of hydrocarbons at an illumi-

nated n-TiO2/solution interface in an oxygenated medium).

The term ‘‘photoelectrolysis’’ is correctly applied to a case

involving semiconductor photoelectrode(s) in an electro-

chemical cell. The term ‘‘photocatalysis’’ has been gener-

ally applied to the case of semiconductor suspensions (see

below). The term ‘‘photoassisted splitting’’ is recommended

for cases wherein the excitation light energy only partially

furnishes the voltage needed for the electrolysis process, the

rest being accommodated by an applied external bias (see

below). Finally, the term ‘‘solar’’ should be reserved for

cases where sunlight (or at least simulated sunlight) was used

for the semiconductor excitation. In all the cases, the more

general term (or prefix) ‘‘photo’’ is appropriate.
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Figure 1 illustrates the interfacial energetics involved in

the photoelectrochemical evolution of H2. Thus, the elec-

tronic energy levels in the semiconductor and in the

contacting solution are shown on a common diagram. In a

semiconductor, the filled electronic levels (valence band or

VB) and the empty levels (conduction band or CB) are

separated by a ‘‘forbidden’’ gap, namely, the band gap

energy, Eg [34–36]. Photoexcitation of the semiconductor

with light of energy equal to or exceeding Eg (i.e., with

wavelengths corresponding to or shorter than that corre-

sponding to the energy gap) elicits electron–hole pairs, a

fraction of which (as defined by the quantum yield) escape

recombination and find their way to the semiconductor/

solution interface. For the photosplitting of water (Fig. 1a),

the CB and VB edges at the semiconductor surface (ECB

and EVB respectively) must bracket the two redox levels

corresponding to the hydrogen evolution reaction (HER)

and the oxygen evolution reaction (OER) respectively. This

is tantamount to stating that the photogenerated electrons

have sufficient energy to reduce protons and the photo-

generated holes have sufficient energy to oxidize water

(Fig. 1a).

This is a stringent requirement indeed as further elabo-

rated in the next section. Instead of actually photosplitting

water, sacrificial agents may be added to the solution such

that the HER and OER steps may be separately optimized

and studied (Fig. 1b and c). It must be borne in mind that

now the overall photoreaction becomes thermodynamically

‘‘down-hill’’ and is more appropriately termed: ‘‘photo-

catalytic’’(see above). Examples of sacrificial agents in-

clude sulfite for the photo-driven HER case (Fig. 1b) or

Ag+ as the electron acceptor for the photocatalytic oxida-

tion of water (Fig. 1c).

Instead of using the semiconductor in the form of

electrodes in an electrochemical cell, a ‘‘wireless’’ water

splitting or HER system could be envisioned where particle

suspensions are used (instead of electrodes) in a photo-

chemical reactor. Two points regarding such an approach

must be noted. First, unlike in the case of a semiconductor

electrode, a bias potential cannot be applied in the sus-

pension case. Second, the sites for the HER and OER are

not physically separated as in the electrochemical case.

Thus, the potential exists in a photochemical system for a

highly explosive stoichiometric (2:1) mixture of H2 and O2

to be evolved. Nonetheless, strategies have been devised

for immobilizing the semiconductor particles in a mem-

brane so that the HER and OER sites are properly separated

[37–43].

Bifunctional redox catalysts have been investigated in

terms of their applicability for the solar-assisted splitting of

water [1, 12, 44–52]. In this approach, Pt (an excellent

catalyst for the HER) and RuO2 (an excellent catalyst for

the OER) are loaded onto colloidal TiO2 particles. But

unlike in the approaches discussed abover, the oxide

semiconductor is not used as a light absorber; instead an

inorganic complex [e.g., amphiphilic Ru(bpy)3
2+ derivative,

bpy = 2,2¢-bipyridyl ligand] is used as the sensitizer [1, 12,

44]. Claims of cyclic and sustained water cleavage by

visible light in this system, however, have not been inde-

pendently verified. Since these ‘‘microheterogeneous’’

assemblies do not involve photoexcitation of a semicon-

ductor, they are not further discussed here.

A photoelectrochemical (photoelectrolysis) system can

be constructed using an n-type semiconductor electrode, a

p-type semiconductor, or even mating n- and p-type

semiconductor photoelectrodes as illustrated in Fig. 2a–c

respectively. In the device in Fig. 2a, OER occurs on the

semiconductor photoanode while the HER proceeds at a

catalytic counterelectrode (e.g., Pt black). Indeed, the

classical n-TiO2 photocell alluded to earlier [29–33] be-

longs to this category. Alternately, the HER can be

photodriven on a p-type semiconductor while the OER

occurs on a ‘‘dark’’ anode.

Unlike the single ‘‘photosystem’’ cases in Fig. 2a and b,

the approach in Fig. 2c combines two photosystems. Both

heterotype (different semiconductors) or homotype (same

semiconductor) approaches can be envisioned, and it has

been shown [53] that the efficiency of photoelectrolysis
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Fig. 1 Interfacial energetics at semiconductor–liquid junctions. D is

an electron donor and A is an electron acceptor
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with solar radiation can be enhanced by using simulta-

neously illuminated n- and p-type semiconductor

electrodes (Fig. 2c). It is interesting to note that this twin-

photosystems approach mimics the plant photosynthesis

system, intricately constructed by nature, albeit operating

at rather low efficiency. The approach in Fig. 2c has at

least two built-in advantages. First, the sum of two pho-

topotentials can be secured in an additive manner such that

the required threshold for the water splitting reaction can

be more easily attained than in the single photoelectrode

cases in Fig. 2a and b. Second, different segments of the

solar spectrum can be utilized in the heterotype approach,

and indeed, many semiconductors (with different Eg’s) can

be stacked to enhance the overall solar conversion effi-

ciency of the device [54, 55]. However, the attendant price

to be paid is the concomitant increase in the device com-

plexity. Further, the photocurrents through the two inter-

faces will have to be carefully matched since the overall

current flowing in the cell must obviously be the same.

Finally, hybrid approaches for water photosplitting can

be envisioned. As illustrated in Fig. 3a, a water electrolyzer

can be simply hooked up to a solar panel that delivers the

needed photovoltage [18, 55–57]. A conceptually more

appealing scenario deploys a p–n junction directly in ohmic

(electronic) contact with the electroactive surface where

the HER (or less commonly, the OER) occurs (Fig. 3b). A

variety of such ‘‘monolithic’’ configurations have been

discussed, not all involving oxide semiconductors [58–

62].For example, a p/n photochemical diode consisting of

p-GaP and n-Fe2O3 has been assembled in a monolithic

unit and studied for its capability to evolve H2 and O2 from

seawater [63].

3 An ideal photoelectrolysis system

What photovoltage and semiconductor bandgap energy

(Eg) would be minimally needed to split water in a single

photosystem case (c.f., Fig. 2a or b)? To split water into H2

and O2 with both products at 1 atm, a thermodynamic

potential of 1.23 V is needed. To this value would have to

be added all the losses within an operating cell mainly

related to resistive (Ohmic components) and the overpo-

tentials (kinetic losses) required to drive the HER and OER

at the two electrode/electrolyte interfaces. This would

translate to a semiconductor Eg value of ~2 eV if the

splitting of water to H2 and O2 is the process objective. On

the other hand, photovoltaic theory [64] tells us that the

photovoltage developed is nominally only ~60% of Eg.

Taking all this into account, an Eg value around 2.5 eV

would appear to be optimal.

What about a twin-photosystem configuration as in

Fig. 2c? Optimal efficiency is reached in such a configu-

ration when one semiconductor has an Eg value of ~1.0 eV

and the second ~1.8 eV [65]. On the other hand, it has
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been pointed out [66] that an optimal combination would

be two matched electrodes of equal 0.9 eV band gap, since,

in the absence of other limitations, the photocurrent would

have been dictated by the higher Eg electrode of a pair.

An irradiated semiconductor particle in a microhetero-

geneous system can be regarded as a short-circuited elec-

trochemical cell where that particle is poised at a potential

(DV) such that the anodic and cathodic current components

are precisely balanced (i.e., no net current obviously is

flowing through that particle [67]. This photovoltage

obviously has to attain a value around ~2 V for the water

splitting reaction to be sustained. Given the need to reduce

the kinetic losses and move the photovoltage value down to

one around the thermodynamic (ideal) limit of 1.23 V, it is

therefore not surprising that many of the studies on semi-

conductor particle suspensions have utilized (partially)

metallized surfaces—the metals being selected to be cata-

lytic toward the HER. The prototype here is the platinized

semiconductor particle (e.g., Pt/TiO2) and the platinum

islands are deposited on the oxide surface using photolysis

in a medium containing the Pt precursor (e.g., PtCl6
2–) and a

sacrificial electron donor (e.g., acetate) [68, 69]. Obvi-

ously, the bifunctional catalyst assemblies discussed earlier

are motivated by considerations to make the HER and OER

processes more facile. Very detailed studies also have ap-

peared on catalytic modification of semiconductor elec-

trode surfaces to improve the HER performance; the reader

is referred to the many review articles and book chapters on

this topic [1, 11, 70–73].

The earlier discussion related to Fig. 1a should have

indicated that it is simply not the magnitude of Eg (and the

DV generated) alone that is the sole criterion for sustaining

the water photosplitting process. Where the CB and VB

levels lie on the energy diagram for the semiconductor at

the interface is crucial. Assuming that we are dealing with

thermalized electrons here (i.e., no ‘‘hot carrier’’ pro-

cesses), the CB edge for the n-type semiconductor has to be

higher (i.e., be located at a more negative potential) relative

to the H2/H+ redox level in the solution (c.f., Fig. 1a). In

the event that this is not true (see Fig. 4), an external bias

potential would be needed to offset the deficit energy

content of the photogenerated electrons. Other equivalent

statements can be made for the requirements for an n-type

semiconductor, namely that the semiconductor has to have

low electron affinity or that the flat-band potential for that

particular semiconductor/electrolyte interface has to be

more negative than the H2/H+ redox level.

Interestingly, rutile TiO2 electrodes have an interfacial

situation similar to that schematized in Fig. 4. Thus, the

authors in the classical n-TiO2 water splitting study [29–

33] circumvented this problem via a chemical bias in their

electrochemical cell by imposing a pH gradient between

the photoanode and cathode chambers. On the other hand,

photogenerated holes in TiO2 are generated at a very po-

sitive potential (because of its low-lying VB edge at the

interface) so that they have more than enough energy to

oxidize water to O2. Not too many semiconductor surfaces

are stable against photocorrosion under these conditions;

i.e., the photogenerated holes attack the semiconductor it-

self rather than a solution species such as OH– ions. The

requirements for a single photosystem for splitting water

should have semiconductor energy levels that straddle the

two redox levels (H2/H+ and OH–/O2), have an Eg value of

~2.5 eV for the semiconductor, and with a semiconductor

surface that is completely immune to photocorrosion under

OER (or HER) conditions. Additionally, the semiconductor

surface has to be made catalytically active toward OER or

HER.

Interfacial energetics in two-photosystem cells com-

bining n- and p-type semiconductor electrodes respectively

(Fig. 2c) have been discussed [74]. Stability issues in

photoelectrochemical energy conversion systems have

been reviewed [9, 13, 14].

In a regenerative solar energy conversion system, the

device efficiency (g) is simply given by the ratio of the

power delivered by the photovoltaic converter and the

incident solar power (Ps in W m–2 or mW cm–2). However,

we are concerned here with devices producing a fuel (H2)

and several expressions exist for the device efficiency.

Thus, this efficiency can be expressed in kinetic terms [55,

75]:

g1 ¼
DGo
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In Eq. 1, DGH2
o is the standard Gibbs energy for the water
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Fig. 4 An interfacial energetic situation in a photoelectrolysis cell

where the flat-band potential of the n-type semiconductor photoanode
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needed in this case to drive the photoelectrolysis process
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generation of H2, and A is the irradiated area (m2 or cm2). In

the above (as well as in the expression below), it is assumed

that the H2 gas is evolved at 1 atm in its standard state.

(Corrections have been discussed for cases where the gas is

not evolved at 1 atm, see [55]) Another equation for the

efficiency refers to the standard (Nernstian) voltage for the

water splitting reaction, 1.23 V [13]:

g2 ¼
1:23� Vbiasð Þ it

PsA
� 100 ð2Þ

The bias voltage, that is needed in some cases is Vbias

and it is the current corresponding to the maximum power

point [11, 65] of the cell.

In some cases, DH values are used in place of the free

energy, and then the term, 1.23 in Eq. 2, must be replaced

with 1.47. This assumes that the products will be burned

(i.e., in a thermal combustion process) to recover the stored

energy as heat rather than as electrical energy in a fuel cell.

Other efficiency expressions have been proposed that take

into account the energy throughput or the polarization

losses at the photoelectrode(s) and the ‘‘dark’’ counter-

electrode where relevant (see for example, [76]). The

shortcomings of these alternate expressions have been

pointed out [13]. In cases where the energy storage system

generates a multitude of products rather than just H2, the

free energy term in the numerator in Eq. 1 becomes a

summation of all the free energies stored in the various

products [77].

What about ideal and achievable efficiency values in

photoelectrolytic cells? Discussions exist for ideal limits of

process efficiency values [13, 55, 75, 78, 80]. Taken as a

whole, a 10–12% process efficiency (under, say, AM 1.0

solar irradiation) for a solar photoelectrochemical water

splitting system based on a single photoconverter, appears

to be a reasonable target. Higher efficiencies can be real-

ized in a multi-photosystem or even a tandem (i.e., hybrid,

see above) configuration although attendant increase in

costs associated with increased system complexity may

have to be taken into account here. The sensitivity of g to

parameters such as the semiconductor band gap (Eg) has

been analyzed by several authors [78–80]. The efficiency

peaks at ~1.5 eV and ~2.2 eV for a twin- and a one-pho-

tosystem respectively [79, 80] and at ~1.8 eV for a tandem

cell combining a solar photovoltaic cell with a single

photoanode-based electrochemical cell [55].

The search for satisfactory semiconductor candidates

has continued at an unabated rate to the time of writing of

this article. In a historical sense, it is interesting that the

shift of the research objective from initially photoelec-

trolysis toward regenerative photoelectrochemical cells

(which generate electricity rather than a fuel such as H2) in

the early years (1980s) is undoubtedly a consequence of the

many challenges involved in the discovery (and optimiza-

tion) of a semiconductor for the solar water splitting

application.

3.1 Why oxide semiconductors

Oxide semiconductors are eminently attractive candidates

as the photocatalyst materials for photoelectrochemical H2

generation. A sizable fraction of the total cost of the solar

photoelectrolysis assembly resides with the semiconductor

photocatalyst itself. Thus given that silicon itself is not an

optimal semiconductor for photoelectrochemical H2 gen-

eration, because of stability problems and an insufficient Eg

value of 1.1 eV (see above), the remaining option would be

compound semiconductors drawn from Groups II, III, V,

and VI in the Periodic Table. However, semiconductors

containing elements such as Ga or In are hardly attractive

because of the scarcity of these metals while compounds

such as GaAs, CdTe and CdSe would suffer from concerns

with elemental toxicity and concomitant environmental

issues associated with materials disposal after the device

lifetime. This then leaves oxide semiconductors as the

photocatalyst materials of choice for the H2 generation

application.

Oxide semiconductors are generally prepared by cera-

mic (high-temperature) routes. This would be a handicap

for energy applications of the synthesized materials. The

net energy gain (NEG) is an important concept in energy

economics and this refers to the surplus between the energy

required to harvest an energy source (in this case, the

semiconductor) and the energy provided by that same

source. The lower the external energy input for the semi-

conductor synthesis, the lower the energy payback time (or

the higher the NEG). This is where low-temperature syn-

thesis routes such as electrodeposition [81], chemical bath

deposition [82], or energy-efficient approaches to semi-

conductor synthesis such as combustion synthesis [83],

become strategically very important.

4 Photoelectrochemistry of oxide

semiconductors—early work

The use of oxide semiconductors for the photoelectrolysis

of water has been reviewed [84, 85]. Eleven binary and

ternary oxides were examined in the first review [84].

Linear correlations were presented between the flat band

potential, Vfb of these oxides and their band gap energy

(Eg); and between Vfb and the heat of formation of the

oxide per metal atom per metal-oxygen bond. Aligning all

the oxide energy levels on a common scale, these authors

noted [84] that the position of the conduction band varies
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much more than those of valence bands—a trend expected

from the cationic (d-band) character of the conduction band

in the oxide while the valence band is mainly of O(2p)

character. The latter should be relatively independent of the

oxide parentage in terms of the metal.

A similar correlation between Vfb and Eg was presented

[85] but for a much more extensive collection of oxides

including oxides with or without partially filled d levels and

oxides formed anodically on metals. Only oxides with par-

tially filled d levels (Type ‘‘a’’ in the author’s notation [85])

yielded a straight-line correlation between the two param-

eters. This plot was used by the authors of the two studies

[84, 85] for predictive purposes to assess the efficacy of a

given oxide for the photoelectrolysis of water. As seen

earlier, the Vfb of the material has to be at a negative enough

potential to drive the HER, and Eg has to be ~2 eV and yet

bracket the HER and OER redox levels (c.f., Fig. 1a).

The possibility of introducing new d-bands for Type

‘‘b’’ oxides (with filled d-bands) by introducing dopants

into the host lattice was also discussed [85] with examples.

Other authors have also advocated this approach [86]. A

review [14] contains further examples of this approach for

effectively ‘‘shrinking’’ the original Eg and sensitizing the

oxide to visible portions of the solar spectrum. We shall

return to this aspect for the specific case of TiO2 later in

this chapter.

We now turn to discussions of individual oxide semi-

conductor materials for the photoelectrolysis of water,

starting with the ‘‘mother’’ of all oxides, namely, TiO2.

5 Titanium dioxide early work

Historically, this is the material which really sparked

interest in the solar photoelectrolysis of water. Early papers

on TiO2 mainly stemmed from the applicability of TiO2 in

the paint/pigment industry [87] although fundamental as-

pects such as current rectification in the dark (in the reverse

bias regime) shown by anodically formed valve metal

oxide film/electrolyte interfaces was also of interest (e.g.,

[28]). Another driver was possible applications of UV-

irradiated semiconductor/electrolyte interfaces for envi-

ronmental remediation [67, 88, 89].

Representative early work on this remarkable material is

presented in chronological order in Table 1, with all these

studies aimed toward the photoelectrolysis of water. Further

summaries of this early body of work are available [2, 4, 9, 14].

5.1 Studies on the mechanistic aspects of processes at

the TiO2-solution interface

Also contained in the compilation in Table 1 are some

early studies oriented toward the mechanistic aspects of the

photoelectrochemical oxidation of water (and other com-

pounds) at the n-TiO2-electrolyte interface, as exemplified

by Entries 23 and 29 [109, 115]. There are recent and

representative studies of this genre [121–153].

5.2 Visible light sensitization of TiO2

Rather problematic with TiO2 in terms of the attainable

process efficiency is its rather wide band gap (3.0–3.2 eV).

Consequently, only a small fraction (~5%) of the overall

solar spectrum can be harnessed by this material. Thus, the

early work (as in Table 1, Entries 16 and 17 [102, 103]

respectively) has also included attempts at extending the

light response of TiO2 from the UV to the visible range [for

example, 123, 154–160]. Reviews of these works are

available [14, 161–163]. For reasons mentioned earlier, we

exclude for our discussion, studies oriented toward chem-

ical modification of the TiO2 surface with a dye. As sum-

marized elsewhere [162, 163]transition metal dopants also

modify the interfacial charge transfer and electron–hole

recombination behavior of the TiO2 host. Whether a given

dopant exerts a positive or negative effect depends on the

particular metal [162, 163].

It must be noted that most studies on metal-doped TiO2

are oriented toward the photo-oxidation of environmental

pollutants (e.g., 4-nitrophenol [164] 4-chlorophenol [165])

rather than toward the photoelectrolysis of water. Other

aspects of metal doping include the effect of UV radiation

of Ag-doped TiO2 specimens [166, 167] and plasma

treatment [168]. Metal doping by ion implantation of TiO2

has been discussed [169, 170]. Noble-metal doped (not

chemically modified, see above) TiO2 samples are also of

interest [171].

Non-metallic elements such as fluorine, carbon, nitrogen

and sulfur have been incorporated into TiO2. Table 2 con-

tains a compilation of representative studies on this topic.

As with the trend noted earlier with metal dopants, very few

of the studies in Table 2 are oriented toward water photo-

splitting or OER [175, 185, 187]. Other than the desired

optical response, non-metallic dopants also exert electronic

effects on the host behavior as with the metal dopants (see

above). Thus F-doping is observed to cause a reduction in

the e ––h+ recombination rate [188]while N-doping at high

levels has the opposite effect and serves to suppress the

photocatalytic activity of the TiO2 host [181]. Conflicting

views exist on non-metal doping, particularly with respect

to the mechanistic aspects [181].

5.3 Recent work on TiO2 on photosplitting of water or

on the oxygen evolution reaction

Table 3 contains a compilation of studies that have

appeared since 1985. Several points are worthy of note
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Table 1 Representative examples of work prior to ~1985 on the use of TiO2 for the photoelectrolysis of water

Entry

number

Title of article Comments Reference(s)

1 Electrochemical Photolysis of Water at

a Semiconductor Electrode

First demonstration of the feasibility

of water splitting.

[30]

2 The Quantum Yield of Photolysis of Water on TiO2

Electrodes

Very low quantum yields (~10–3) were measured

when no external bias was applied. The effect

of photon flux also explored.

[90]

3 Photoelectrolysis of Water Using Semiconducting

TiO2 Crystals

Study shows the necessity of a bias potential

for rutile photoanodes.

[91]

4 Photoelectrolysis of Water in Cells with TiO2 Anodes Both single crystal and polycrystalline TiO2 used and

external quantum efficiency measured.

[92]

5 A Photo-Electrochemical Cell with Production

of Hydrogen and Oxygen by a Cell Reaction

Cell configuration also employs an illuminated p-GaP

photocathode (c.f. Ref. 53).

[93]

6 Photoassisted Electrolysis of Water by Irradiation

of a Titanium Dioxide Electrode

The initial claim in Ref. 30 supported along with data

on the wavelength response and the correlation

of product yield and current.

[94]

7 Semiconductor Electrodes 1. The Chemical Vapor

Deposition and Application of Polycrystalline n-Type

Titanium Dioxide Electrodes to the Photosensitized

Electrolysis of Water

Comparison of the behavior of CVD and single

crystal n-TiO2 presented.

[95]

8 Formation of Hydrogen Gas with an Electrochemical

Photo-cell

See text. [31]

9 Hydrogen Production under Sunlight with an

Electrochemical Photo-cell

See text. [32]

10 Photoproduction of Hydrogen: Potential Dependence

of the Quantum Efficiency as a Function

of Wavelength

– [96]

11 Photoelectrolysis of Water with TiO2-Covered Solar-Cell

Electrodes

A hybrid structure, involving a p-n junction Si

cell coated with a TiO2 film by CVD, is studied.

[97]

12 Electrochemical Investigation of an Illuminated TiO2

Electrode

Two types of TiO2 films studied, namely, anodically

formed layers on Ti sheets and those prepared

by plasma jet spraying of TiO2 powder.

[98]

13 Intensity Effects in the Electrochemical Photolysis

of Water at the TiO2 Anode

Quantum efficiency observed to approach unity

at low light intensities.

[99]

14 Improved Solar Energy Conversion Efficiencies for the

Photocatalytic Production of Hydrogen via TiO2

Semiconductor Electrodes

Heat treatment of Ti metal found to influence

performance.

[100]

15 Near-UV Photon Efficiency in a TiO2 Electrode:

Application to Hydrogen Production from

Solar Energy

– [101]

16 Novel Semiconducting Electrodes for the

Photosensitized Electrolysis of Water

Appears to be the first study on doping TiO2 to extend

its light response into the visible range of the

electromagnetic spectrum.

[102]

17 Photoelectrolysis of Water in Sunlight with Sensitized

Semiconductor Electrodes

Similar observations as in Ref. 102 for Al3+-doped TiO2. [103]

18 Photoelectrolysis The behavior of single crystals of two different orientations

(| and || to the C axis) and polycrystalline TiO2 reported.

[104]

19 The Quantum Yields of Photoelectric Decomposition of

Water at TiO2 Anodes and p-Type GaP Cathodes

A more detailed study as in Ref. 103 by the same

research group.

[105]

20 Anomalous Photoresponse of n-TiO2 Electrode

in a Photo-electrochemical Cell

The behavior of surface states at the TiO2-electrolyte

interface is focus of this study.

[106]

21 An Effect of Heat Treatment on the Activity of Titanium

Dioxide Film Electrodes for Photosensitized

Oxidation of Water

Heat treatment in argon atmosphere found to improve

performance of both anodic and pyrolytically prepared

TiO2 films.

[107]

22 Preparation of Titanium Dioxide Films as Solar

Photocatalysts

Low-cost polyimide plastic used as film substrate. [108]
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here. The vast majority of the entries feature studies on

TiO2 powders rather than on electrodes in a photoelectro-

chemical cell configuration. In this light, the new studies

can be regarded as offshoots inspired by the earlier (pre-

1985) studies on co-functional photocatalysts and the

cyclic cleavage of water [1, 12]. Second, many of the new

studies address two key issues with the earlier systems: (a)

non-stoichiometric evolution of H2 and O2 and (b) poor

performance stemming from back reactions and electron–

hole recombination processes. With reference to the first

point, very little O2 evolution was observed in many cases

in studies on TiO2 powder suspensions with reports [111,

191, 195] of stoichiometric H2 and O2 evolution (i.e., in the

expected 2:1 ratio) being the exceptions rather than the

rule. Initially, this discrepancy was attributed by the com-

munity to the photo-induced adsorption of the (evolved) O2

on the TiO2 surface.

The remarkable effect of a NaOH ‘‘dessicant’’ coating

on the TiO2 surface on the efficiency of water photosplit-

ting appears to have radically changed this thinking (see

[211] and references therein). The new results support the

deleterious role that Pt islands on the TiO2 play in pro-

moting the reverse reaction, 2H2 + O2 fi 2H2O. Inter-

estingly, the irradiation geometry also appears to exert an

effect on the extent of back reactions [212]. Adsorption of

CO on Pt, for example, was also found to inhibit the re-

verse reaction [213]. Subsequent studies on the role of

Na2CO3 addition ([214] and Entries 3 and 4 in Table 3)

underline the importance of inhibiting back reactions on

catalyst-modified TiO2 samples. By the same token, unu-

sual valence states (Ti5+) that have been proposed [199] to

explain the non-stoichiometric gas evolution have been

challenged by other authors [215].

Other factors influencing the yield of H2 and O2 in

irradiated TiO2 suspensions include the nature of the

co-catalyst (see, for example, Entry 4 in Table 3), the

crystal form of TiO2, particle size of TiO2, temperature

and ambient pressure [211]. The reader is referred to

[211] for further details. Other interesting mechanistic

aspects of the water photosplitting process on the TiO2

surface such as hydrogen atom spillover have also been

discussed [216].

Table 1 continued

Entry

number

Title of article Comments Reference(s)

23 Photoelectrochemical Behavior of TiO2 and

Formation of Hydrogen Peroxide

Other than the OER, reduction of O2 to H2O2 also

observed.

[109]

24 Photodeposition of Water over Pt/TiO2 Catalysts Powdered photocatalyst is employed. [110]

25 Photocatalytic Decomposition of Gaseous

Water over TiO2 and TiO2–RuO2 Surfaces

As above but gaseous water used at room temperature. [111]

26 Photoelectrolysis of Water with Natural Mineral

TiO2 Rutile Electrodes

Natural samples compared with Fe-doped synthetic

single crystal TiO2.

[112]

27 Models for the Photoelectrolytic Decomposition

of Water at Semiconducting Oxide Anodes

Although title is general, theoretical study focuses on the

TiO2-electrolyte interface and the effect of surface states.

[113]

28 Photosynthetic Production of H2 and H2O2 on

Semiconducting Oxide Grains in Aqueous Solutions

Hydrogen peroxide formation observed in TiO2 powder

suspensions as in Ref. 109 for TiO2 films.

[114]

29 Influence of pH on the Potential Dependence

of the Efficiency of Water Photo-oxidation

at n-TiO2 Electrodes

Quantum efficiency for water photooxidation is shown

to be pH-dependent.

[115]

30 Photocatalytic Water Decomposition and Water-Gas

Shift Reactions over NaOH-Coated, Platinized TiO2

As in Entry 24 (Ref. 110) by the same research group. [116]

31 Photosensitized Dissociation of Water using Dispersed

Suspensions of n-Type Semiconductors

Focus of study on TiO2 and SrTiO3 using EDTA as an

electron donor and Fe3+ as acceptor for tests of water

reduction and oxidation activity respectively (c.f. Figures

1b and 1c).

[117]

32 Photocatalytic Hydrogen Evolution from an Aqueous

Hydrazine Solution

Pt-TiO2 photocatalyst used and both H2 and N2 evolution

observed.

[118]

33 Conditions for Photochemical Water Cleavage.

Aqueous Pt/TiO2 (Anatase) Dispersions under

Ultraviolet Light

As in Entries 24 and 25 (Refs.110,111) photocatalyst

dispersions studied.

[119]

34 Colloidal Semiconductors in Systems for the Sacrificial

Photolysis of Water. 1. Preparation of a Pt/TiO2

Catalyst by Heterocoagulation and its Physical

Characterization

– [120]
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An interesting aspect of the new work on TiO2, namely

that of combining two photosystems (in a Z-scheme)

mimicking plant photosynthesis (see Entries 6 and 10 in

Table 3) also has its roots in early work in this field (see,

for example, Entry 5 in Table 1). Further elaborations of

this strategy are available [217, 218].

Finally, some of the studies considered in Table 3 (En-

tries 11 and 13) buck the trend mentioned earlier that few of

the studies on transition-metal doped TiO2 are oriented to-

ward the water-photosplitting application. These new stud-

ies exploit the visible-light sensitization of the doped host

material as well as the improved electronic characteristics

observed in some cases (particularly the co-doped instance)

to enhance the efficiency of the water photosplitting process.

In sum, TiO2 continues to be a veritable workhorse of

the photocatalysis and photoelectrolysis communities.

Studies of the electrical properties and defect chemistry

continue to appear for this material in both single crystal

[219–222] and nanostructured form [223]. Yet this material

to date has not yielded systems for evolving H2 and O2 at

the 10% benchmark efficiency level. Studies on TiO2 ori-

ented toward visible light sensitization and efficiency

enhancement will undoubtedly continue, at an unabated

rate, in the foreseeable future. This is because of the

extensive and growing market that already exists for this

commodity chemical in a variety of other application areas

and because of its excellent chemical attributes such as

inertness and stability.

6 Other binary oxides

Table 4 contains a compilation of studies on other binary

oxides that have been examined for their applicability to

Table 2 Representative studies on doping of TiO2 with non-metallic elements

Entry

number

Title of article Comments Reference(s)

1 Visible-Light Photocatalysis in Nitrogen-Doped

Titanium Oxides

Both films and powders considered. Substitutional doping with

nitrogen shown to bring about band gap narrowing and also

high photocatalytic activity with visible light. Experimental

data supported with first-principles calculations.

[172]

2 Formation of TiO2-xFx Compounds in

Fluorine-Implanted TiO2

Fluorine substituted for oxygen sites in the oxide by ion

implantation.

[173]

3 Band Gap Narrowing of Titanium Dioxide

by Sulfur Doping

Oxidative annealing of TiS2 used. Ab initio calculations

also reveal mixing of S 3p states with the valence bond

to bring about band gap narrowing.

[174]

4 Efficient Photochemical Water Splitting by a

Chemically Modified n-TiO2

Combustion of Ti metal in a natural gas flame done to substitute

carbon for some of the lattice oxygen sites. The photocatalysis

performance data have been questioned (see Refs. 176–178).

[175]

5 Daylight Photocatalysis by Carbon-Modified

Titanium Dioxide

Titanium tetrachloride precursor hydrolyzed with nitrogen bases to

yield (surprisingly) C-doped (instead of N-doped) TiO2. Study

oriented toward environmental remediation applicability.

[179]

6 Carbon-Doped Anatase TiO2 Powders as

a Visible-Light Sensitive Photocatalyst

Oxidative annealing of TiC used to afford yellow doped powders.

Study focus as in Entry 5.

[180]

7 Nitrogen-Concentration Dependence on

Photocatalytic Activity of Ti2-xNx Powders

Samples prepared by annealing anatase TiO2 under NH3 flow

at 550–600 �C.

[181]

8 Visible Light-Induced Degradation

of Methylene Blue on S-doped TiO2

As in Entry 3 (Ref. 174) by the same research group. [182]

9 Visible-Light Induced Hydrophilicity

on Nitrogen-Substituted Titanium

Dioxide Films

Degree of hydrophilicity correlated with the extent of

substitution of nitrogen at oxygen sites.

[183]

10 Spectral Photoresponses of Carbon-Doped

TiO2 Film Electrodes

Raman spectra used to identify disordered carbon in the

flame-formed samples in addition to lower nonstoichiometric

titanium oxides identified by X-ray diffraction.

[184]

11 Photoelectrochemical Study of Nitrogen-Doped

Titanium Dioxide for Water Oxidation

One of the few studies probing the influence

of doping on OER.

[185]

12 Metal Ion and N Co-doped TiO2 as a

Visible-Light Photocatalyst

Co-doped samples prepared by polymerized complex

or sol-gel method. Doped N species found to reside

at interstitial lattice positions in the host.

[186]

13 Novel Carbon-Doped TiO2 Nanotube Arrays with

High Aspect Ratios for Efficicient Solar Water

Splitting

– [187]
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drive the photoelectrolysis of water. As cited earlier, gen-

eral reviews are available on many of the oxides listed in

this table [4, 14, 84, 85]. Other than TiO2, Fe2O3 and WO3

are two of the most widely studied among the binary oxide

semiconductors, and studies on these oxides have contin-

ued to appear right up to the time of the writing of this

chapter.

Tungsten oxide shares many of the same attributes

with TiO2 in terms of chemical inertness and exceptional

photoelectrochemical and chemical stability in aqueous

media over a very wide pH range. However, its flat-band

potential (Vfb) lies positive of that of TiO2 (anatase)

such that spontaneous generation of H2 by the photo-

generated electrons in WO3 is not possible. This location

of Vfb has been invoked [232] for the very high IPCE

values observed for the photoinduced OER in terms of

the rather slow back electron transfer leading to O2

reduction. A variety of dopants (e.g., F, Mg, Cu) have

been tested for WO3[226, 229, 235] and Pt-modified

samples have been deployed in a Z-scheme configuration

[234]. Electron acceptors such as Ag+ [228] and

IO3
–[234] species have been used to study the O2 evo-

lution characteristics of the WO3 photocatalyst under

visible light irradiation. As pointed out very early in the

history of study of this material [218, 269] the lower Eg

value of WO3 (relative to TiO2) results in a more sub-

stantial utilization of the solar spectrum. This combined

with the advances in nanostructured oxide materials will

likely sustain interest in WO3 from a photoelectrolysis

perspective.

Table 3 Representative studies since 1985 on the photosplitting of water using TiO2

Entry Number Brief outline of study Reference(s)

1 Ferroelectric substrates (poled LiNbO3) were used to support TiO2 films.

After platinization of TiO2, water splitting was examined in both liquid

and gas phases under Xe arc lamp illumination.

[189]

2 Both reduced and Pt-modified powder samples were studied in distilled water and

in aqueous solutions of HCl, H2SO4, HNO3 and NaOH. Water photodecomposition

proceeds moderately in distilled water and in NaOH but is strongly suppressed in

acidic aqueous media. The NaOH coating effect mimicks that found by other workers

earlier (see Ref. 191 and text).

[190]

3 Sodium carbonate addition to a Pt/TiO2 suspension in water effective

in promoting stoichiometric photodecomposition of water.

[192, 193]

4 Demonstration of solar H2 and O2 production on NiOx/TiO2 co-catalyst

with Na2CO3 or NaOH addition.

[194, 195]

5 A photoelectrolyzer designed with a TiO2 photoanode and a membrane of sulfonated

polytetrafluoroethylene as the electrolyte. A quantum efficiency of 0.8 was reported.

[196]

6 Photochemical splitting of water achieved by combining two photocatalytic reactions

on suspended TiO2 particles; namely, the reduction of water to H2 using bromide ions

and the oxidation of water using Fe(III) species. High efficiency also observed for the

photoassisted OER on TiO2 in the presence of Fe(III) ions.

[197, 198]

7 Pt- and other catalyst supported TiO2 (P-25) particles studied. Only the HER was observed

and stoichiometry H2 and O2 formation was not found. Mechanistic reasons proposed have

been challenged by other authors (see text).

[199]

8 HER observed in semiconductor septum cells using TiO2 or TiO2–In2O3 composites. [41, 42]

9 Pure rutile TiO2 phase isolated from commercial samples containing both rutile and anatase

by dissolution in HF. The resultant samples studied for their efficacy in driving the

photoassisted OER in the presence of Fe(III) species as electron acceptor (see Entry 6 above).

[200]

10 A Z-scheme system mimicking the plant photosynthesis model developed with Pt-loaded TiO2

for HER and rutile TiO2 for OER. An IO3
–/I– shuttle was used as redox mediator.

[201]

11 Co-doping of TiO2 with Sb and Cr found to evolve O2 from an aqueous AgNO3 solution

under visible light irradiation.

[202]

12 HER observed from a mixed water-acetonitrile medium containing iodide electron donor

and dye-sensitized Pt/TiO2 photocatalysts under visible light irradiation.

[203]

13 Back-reactions (i.e., O2 reduction and H2 oxidation) studied on both TiO2 or Cr and Sb co-doped

TiO2 samples (see Entry 11 above).

[204]

14 TiO2 nanotube arrays prepared by anodization of Ti foil in a F–-containing electrolyte.

Pd-modified photocatalyst samples show an efficiency of 4.8% based on photocurrent

data for the OER.

[205–209]

15 TiO2 co-doped with Ni and Ta (or Nb) show visible light activity for the OER in aq. AgNO3

and HER in aqueous methanol solution.

[210]
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The combination of a rather low Eg value, good photo-

electrochemical stability and chemical inertness coupled

with the abundance of iron on our planet makes Fe2O3 an

attractive candidate for the photoelectrolysis of water. Thus

it is hardly surprising that this material continues to be

intensively studied from this perspective. As with TiO2 and

WO3, Fe2O3 (particularly the a-modification) has been

examined in single crystal form, as thin films prepared by

CVD [237, 239, 255, 270], pyrolytic conversion of iron

[240], and spray pyrolysis [248, 250–253], or as sintered

pellets from powders [241–246]. A variety of dopants have

been deployed to modify the host [242–245, 247, 250–253]

and remarkably, p-type semiconductor behavior has been

reported [242, 244, 245, 251] in addition to the more

commonly occurring n-type material. The main handicap

with Fe2O3 is its rather poor electronic and charge transport

characteristics regardless of the method of preparation of

the material. Specifically, facile e––h+ recombination,

trapping of electrons at defect sites and the poor mobility of

holes conspire to result in very low efficiencies for water

oxidation. Attempts to circumvent these problems by using

unique photoanode configurations (e.g., nanorod arrays

[249]) or compositional tuning (e.g., minimizing sub-stoi-

chiometric phases such as Fe3O4 [246, 253]) are continuing

and will undoubtedly contribute to further examinations of

this promising material in the future.

By way of contrast, none of the other binary oxides

listed in Table 4 appear to hold much promise. While ZnO

has enjoyed extensive popularity in the photochemistry

community (even comparable to TiO2 in the early days

prior to ~1980), it is rather unstable (at least in the forms

synthesized up till now) under illumination and in the OER

and HER regimes. This problem besets most of the other

candidates in Table 4 with the exception of SnO2 (whose

Eg is too high) and possibly Bi2O3. The report [263] of

photocatalytic water splitting on Cu2O powder suspensions

(with stability in excess of ~1900 h!) has been greeted with

scepticism by others [264] who have also pointed out that

the Cu2O band-edges are unlikely to bracket the H+/H2 and

O2/H2O redox levels as required (see Fig. 1a). Our own

studies [271] on electrodeposited samples of this oxide

have utilized a Ni/NiO protective layer, catalyst modifi-

cation (with e.g., Pt) to drive the HER and the use of

optimized electron donors in the anode compartment in a

twin-compartment photoelectrochemical cell (Fig. 5)

h
+

Transparent Ni 
layer

H+

H2

Pt

A

A+

TCO

Cu2O

Visible light

e
-

h

Fig. 5 Twin-compartment photoelectrochemical cell for the photo-

catalytic generation of H2 from water using electrodeposited p-Cu2O

(from Ref. 253). TCO is a transparent conducting oxide substrate for

the semiconductor film and A is an electron donor in the anode

compartment

Table 4 Binary oxides (other than TiO2) that have been considered for the photoelectrolysis of water

Entry number Oxide

semiconductor

Energy band

gap, eV

Comments Reference(s)

1 WO3 2.5–2.8 This material has been used as single crystals, thin films, powders

and in mesoporous/nanostructured form. Both virgin and doped

samples studied.

[224–235]

2 Fe2O3 2.0–2.2 As in Entry 1 above. [236–255]

3 ZnO 3.37 Unstable under irradiation and OER/HER conditions. [114]

4 SnO2 3.5 Sb-doped single crystal samples used. Stable H2 and O2 evolution

observed at Pt cathode and SnO2 photoanode respectively.

[256, 257]

5 NiO 3.47 A p-type semiconductor with indirect gap optical transition. [258–260]

6 CdO ~2.3 A n-type semiconductor. Interestingly, RuO2-modified samples

reduced the yield of O2 under irradiation.

[261]

7 PdO ~0.8 A p-type semiconductor. Not stable under irradiation in the

HER regime.

[262]

8 Cu2O 2.0–2.2 Claims of water splitting in powder suspensions challenged

by others (see text).

[263, 264]

9 CuO 1.7 Not photoelectrochemically stable. [239, 265]

10 Bi2O3 2.8 Both doped and catalytically modified samples studied. [239, 266–268]
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[271]. Under these conditions, spontaneous HER was ob-

served under visible light irradiation of the p-Cu2O pho-

tocathode. Photoinduced transfer of electrons from p-Cu2O

to an electron acceptor such as methyl viologen was also

demonstrated via in situ spectroscopic monitoring of the

blue cation radicals [271]. However, the photocurrents

generated are only in the lA level necessitating further

improvements before assessments of practical viability of

Cu2O for solar H2 photogeneration. A value added ap-

proach would be to combine photogenerated H2 generation

with destruction of an environmental pollutant (e.g., dye) in

the other compartment of a divided electrochemical cell

[271–273].

It is worth noting that some oxides have too low a band

gap for optimal solar energy conversion. Palladium oxide

in Table 4 exemplifies this trend as does PbO2 [239] On the

other hand, PbO has an Eg value around 2.8 eV [239].

Other oxides such as CoO and Cr2O3 (both p-type semi-

conductors) have been very briefly examined early on in

the evolution of this field [239].

In closing this section, comparative studies on binary

oxide semiconductors are available [84, 85, 239, 274]

including one study [274] where the electron affinities of

several metal oxides (used as anodes in photoelectrolysis

cells) were calculated from the atomic electronegativity

values of the constituent elements. These electron affinity

estimates were correlated with the Vfb values measured for

the same oxides in aqueous media [274].

7 Perovskite titanates and related oxides

Perovskites have the general formula, ABX3, with SrTiO3

being a prototype. They contain a framework structure

containing corner-sharing TiO6 octahedra with the A cation

in twelve-coordinate interstices [275, 276]. Several hun-

dred oxides have this structure. Table 5 lists the studies

that have appeared on SrTiO3 with photoelectrolysis of

water as a primary objective. As well as the cubic structure

exemplified by SrTiO3, a variety of distorted, non-cubic

structures occurs in which the framework of TiO6 octahe-

dra may be twisted. Thus, BaTiO3 is tetragonal at room

temperature. Both SrTiO3 and BaTiO3 have energy band

gaps around 3.2 eV. With Fe and F doping, the Eg of Ba-

TiO3 has been shrunk from 3.2 eV to ~2.8 eV [304].

Relative to SrTiO3, studies on BaTiO3 from a photoelec-

trolysis perspective are much sparser [304–306].

Titanates with tunnel structures have been examined for

photoelectrolysis applications [307]. Thus, barium tetrati-

tanate (BaTi4O9) has a twin-type tunnel structure in which

the TiO6 octahedra are not oriented parallel to one another

creating a pentagonal prism space. Alkaline metal

hexatitanates (M2Ti6O13; M = Na, K, Rb) are Wadsley–

Andersson type structures in which TiO6 octahedra share

an edge at one level in linear groups of three, giving a

tunnel structure with rectangular space. The reader should

consult the literature for reviews of water photolysis

studies using these types of oxides [170, 307]. These

materials have been used in powder form in suspensions

usually modified with a co-catalyst such as RuO2

[308–318].

More complex perovskites exist containing two different

cations which may occupy either the A or B sites and many

of these also have a layered structure. Two main classes of

such oxides showing interlamellar activity have been ex-

plored for water photolysis: (a) the Dion–Jacobson series of

the general formula, AMn-1BnO3n+1 (e.g., KCa2Ti3O10) and

(b) the Ruddlesden–Popper series of general formula,

A2Mn-1BnO3n+1 (e.g., K2La2Ti3O10) [319, 320]. Corre-

sponding niobates also exist as discussed below. Noble

metal co-catalysts (e.g., Pt) are loaded onto these photo-

catalysts by photocatalytic deposition from H2PtCl6 (see

above). Since the oxide sheets have a net negative charge

(that is balanced by the alkali cations), the PtCl6
2– anions

are not intercalated in the host lattice [319]. Instead, the Pt

sites are formed on the external surfaces of the layered

perovskite powder.

In many of these cases with layered oxides, the H+-

exchanged photocatalysts show higher activity toward the

HER—a trend rationalized by the easy accessibility of the

interlayer space to electron donor species such as methanol

[319, 321]. Other aspects such as Ni-loading and pillaring

of the interlayer spaces have been discussed [319]. Another

type of layered perovskites have been studied with the

generic composition, AnBnO3n+2 (n = 4, 5; A = Ca, Sr, La;

B = Nb, Ti) [322]. Unlike the (100)-oriented structures

discussed above, the perovskite slabs in these oxides are

oriented parallel to the (110) direction. Thus compounds

such as La2Ti2O7 and La4CaTi5O17 were examined in

terms of their efficacy toward water splitting under UV

irradiation [322].

In closing this section, a variety of other ternary oxides

(besides the SrTiO3 prototype) have been examined over

the years. Table 6 contains a representative listing of these

compounds.

8 Tantalates and niobates

We have seen in the preceding section that oxides with

MO6 octahedra can form perovskite structures and this

trend also applies to some tantatates and niobates. The

perovskite, KTaO3, as well as its Nb-incorporated cousin,

KTa0.77Nb0.23O3 were studied early on (1976) in the

history of photoelectrolysis of water (see Entry 8 in
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Table 5 Studies on the use of SrTiO3 anodes or powders for the photoelectrolysis of water

Entry

number

Title of paper Comments Reference(s)

1 Photoelectrochemical Reactions at SrTiO3 Single

Crystal Electrodes

Cell found to work efficiently even without a pH

gradient in the anode and cathode compartments.

[277]

2 Strontium Titanate Photoelectrodes. Efficient Photoassisted

Electrolysis of Water at Zero Applied Potential

As above but the water photosplitting driven by light only

with no external bias. Photoanode stability also

confirmed as in the evolution of H2 and O2 in the correct

2:1 stoichiometric ratio.

[278]

3 Photoelectrolysis of Water in Cells with SrTiO3 Anodes Maximum quantum efficiency at zero bias (10% at

hm = 3.8eV) found to be ~an order of magnitude higher

than TiO2.

[279]

4 Photoeffects on Semiconductor Ceramic Electrodes Photoresponse of SrTiO3 found to be better than that of

BaTiO3. Unlike the use of single crystals in the above

studies (Entries 1–3), polycrystalline electrodes with

large area were used.

[280]

5 Surface Photovoltage Experiments on SrTiO3 Electrodes The role of surface states in mediating charge transfer

between electrode and electrolyte elucidated.

[281]

6 Photocatalytic and Photoelectro-chemical Hydrogen

Production on Strontium Titanate Single Crystals

Both metal-free and platinized samples studied in aqueous

alkaline electrolytes or in the presence of NaOH-coated

crystals.

[282]

7 Photocatalytic Decomposition of Water Vapor

on an NiO–SrTiO3 Catalyst

A series of studies begun with this particular study which

uses powdered photocatalyst. See Entries below.

[283]

8 Visible Light Induced Photo-currents in SrTiO3-LaCrO3

Single-Crystalline Electrodes

Co-doping of La and Cr shifts photoresponse down to

560 nm and strong absorption in the visible range

ascribed to Cr3+ fi Ti4+ charge transfer.

[284]

9 The Sensitization of SrTiO3 Photo-anodes for

Visible Light Irradiation

As in Entry 8 but using the perovskites LaVO3,

Sr2CrNbO6 and SrNiNb2O9 as dopants.

[285]

10 The Coloration of Titanates by Transition Metal Ions in

View of Solar Energy Applications

– [286]

11 Evidence of Photodissociation of Water Vapor

on Reduced SrTiO3(III) Surfaces in a High

Vacuum Environment

First report of photodecomposition of water adsorbed

from the gas phase in high vacuum conditions

on metal-free, reduced single crystals.

[287]

12 Oxygen Evolution Improvement at a Cr-Doped

SrTiO3 Photoanode by a Ru-Oxide Coating

– [288]

13 Electrochemical Conversion and Storage of Solar Energy A doped n-SrTiO3 single crystal was combined with a

proton-conducting solid electrolyte and a metal hydride

allowing for storage of the evolved H2.

[289]

14 Water Photolysis by UV Irradiation of Rhodium Loaded

Strontium Titanate Catalysts. Relation Between Catalytic

Activity and Nature of the Deposit from Combined

Photolysis and ESCA Studies

Powdered catalysts used and the water photolysis

efficiency is found to have a strong pH dependence.

[290]

15 Photocatalytic Decomposition of Liquid Water

on a NiO–SrTiO3 Catalyst

As in Entry 7 but for liquid water. Effect of NaOH film

(see Entry 6) reproduced for NiO–SrTiO3 powder.

[291]

16 Study of the Photocatalytic Decomposition

of Water Vapor over a NiO–SrTiO3 Catalyst

Mechanistic aspects probed by using a closed gas

circulation system and IR spectroscopy (see also Entries

7 and 15).

[292]

17 Photoelectrolysis of Water under Visible Light

with Doped SrTiO3 Electrodes

Sintered samples used with a variety of dopants (Ru, V, Cr,

Ce, Co, Rh).

[293]

18 Mediation by Surface States of the Electroreduction of

Photogenerated H2O2 and O2 on n-SrTiO3 in a

Photoelectrochemical Cell

Back reactions probed and the role of surface states

elucidated.

[294]

19 Photocatalytic Decomposition of Water into

H2 and O2 over NiO–SrTiO3 Powder. 1.

Structure of the Catalyst

Nickel metal also found at the interface of NiO and SrTiO3.

See also Entries 7, 15 and 16.

[295]

20 Mechanism of Photocatalytic Decomposition

of Water into H2 and O2 over NiO–SrTiO3

HER found to occur on the NiO co-catalyst surface

while OER takes place on SrTiO3. See also

Entries 7, 15, 16 and 19.

[296]
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Table 6) [257, 326]. Niobium oxides were also considered

in early studies aimed at shrinking the large band gaps to

values responsive to the visible range of the solar spectrum

[333]. Thus in compounds of the type ANb2O6 (with

A = Ni or Co) we have a conduction band built from d

levels of a highly charged, closed-shell transition metal ion

(Nb5+) while the highest filled valence band is also cation-

derived from the d levels of either Ni2+ or Co2+ [333]. Thus

the main optical transition should be of Ni2+ (or Co2+) fi
Nb5+ charge-transfer type in the visible region. The

ANb2O6 oxide has the columbite structure with a Fe2+ fi
Nb5+ transition featured by a 2.08 eV gap [334]. Families

of Bi2MNbO7 (M = Al, Ga, In), A2B2O7, InMO4 (M = Nb,

Ta) compounds all contain the same octahedral TaO6 or

NbO6 structural units [335].

The parent oxide in these cases can be regarded gener-

ically as M2O5 (M = Nb or Ta). Table 7 contains a listing

of the water photosplitting studies that have appeared on

M2O5, ATaO3 and more complex tantalates and niobates.

Layered perovskite type niobates have the generic formula

A[Bn-1NbnO3n+1] with A = K, Rb, Cs and B = Ca, Sr, Na,

Pb, etc. For example, with values of n = 2 and 3, we can

derive the structures A2M2O7 and AB2Nb3O10 in Table 7

respectively (Entries 3 and 9). Another series of perovsk-

ites has the generic formula: AnMnO3n+2 with A = Ca, Sr,

La and M being either Nb, Ta or Ti. Of course, the simplest

compound in this series has the AMO3 composition as

exemplified by SrTiO3 or KTaO3 (see above).

The layered oxides featured in this section and the

preceding one have ion-exchange characteristics imparted

by the net negative charge residing on the layered sheets.

Thus they can assimilate positively charged ions (such as

K+) in the interlamellar spaces. Interestingly, some of these

materials (e.g., K4Nb6O17) have two types of interlayer

spaces (I and II) which appear alternately [365]. The space

‘‘I’’ is easily hydrated even in air while ‘‘II’’ is hydrated

Table 5 continued

Entry

number

Title of paper Comments Reference(s)

21 Water Photolysis over Metallized SrTiO3 Catalysts Promoting effect of NaOH not so pronounced as for TiO2. [297]

22 Luminescence Spectra from n-TiO2 and n-SrTiO3

Semiconductor Electrodes and Those Doped with

Transition-Metal Oxides As Related with

Intermediates of the Photooxidation Reaction

of Water

Mechanistic aspects clarified using photo- and

electroluminescence measurements.

[298]

23 Photoinduced Surface Reactions on TiO2

and SrTiO3 Films: Photo-catalytic Oxidation

and Photo-induced Hydrophilicity

– [146]

24 Stoichiometric Water Splitting into H2 and O2

using a Mixture of Two Different Photocatalysts

and an IO3/I– Shuttle Redox Mediator under

Visible Light Irradiation

A Z-scheme used using a mixture of Pt-WO3 and

Pt-SrTiO3 photocatalysts. The latter was co-doped

with Cr and Ta.

[299]

25 Visible-Light-Response and Photo-catalytic Activities

of TiO2 and SrTiO3 Photocatalysts Co-doped with

Antimony and Chromium

The band gap of SrTiO3 shrunk to 2.4 eV

by co-doping.

[300]

26 A New Photocatalytic Water Splitting System under

Visible Light Irradiation Mimicking a Z-Scheme

Mechanism in Photosyn-thesis

See Entry 23 above. [234]

27 Construction of Z-Scheme Type Heterogeneous

Photocatalysis Systems for Water Splitting into

H2 and O2 under Visible Light Irradiation

A Pt-SrTiO3 doped with Rh is combined

with a BiVO4 photocatalyst.

[301]

28 Electrochemical Approach to Evaluate the Mechanism

of Photo-catalytic Water Splitting on

Oxide Photocatalysts

Cr or Sb co-doped SrTiO3 samples studied

amongst others.

[204]

29 H2 Evolution from a Aqueous Methanol Solution on

SrTiO3 Photocatalysts Co-doped with Chromium

and Tantalum Ions under Visible Light Irradiation

– [302]

30 Photocatalytic Activities of Noble Metal Ion

Doped SrTiO3 under Visible Light Irradiation

Mn-, Ru-, Rh- and Ir-doped powder

samples studied.

[303]

31 Nickel and Either Tantalum or Niobium-Co-doped TiO2

and SrTiO3 Photocatalysts with Visible-Light

Response for H2 or O2 Evolution from

Aqueous Solutions

Co-doping found to afford higher activity for

HER compared with Ni alone.

[210]
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only in a highly humid environment. It is presumed that the

NiO co-catalyst exists only in ‘‘I’’ such that the HER

occurs mainly in this interlayer space. On the other hand,

the OER is thought to occur in the interlayer space,

II [365].

In general, oxides containing early transition metal

cations with do electronic configuration such as Ti4+, Nb5+

or Ta5+ have wide band gaps (> 3.0 eV). In fact Ta2O5 has

a very high Eg value of ~4.0 eV. Thus, these materials do

not perform well under visible light irradiation, and in

practical scenarios, would only absorb a small fraction of

the solar spectrum. As with TiO2 and the vast majority of

the oxides considered earlier, the ternary (and multinary)

oxides, namely the titanates, tantalates and niobates suffer

from this same handicap. On the other hand, these mate-

rials with smaller Eg values have other problems related

to stability, interfacial energetics, poor charge transfer

characteristics, etc.

9 Miscellaneous multinary oxides

In this ‘‘catch-all’’ section, we mainly discuss the spinel

structures with the generic formulas, AB2O4 and A2MO4.

The unit cell of the spinel structure is a large cube, eight

times (2 · 2 · 2) the size of a typical face-centered cube

[276]. The delafossite-type structure ABO2, in which the A

cation is in linear coordination and the B cation is in

octahedral coordination with oxygen, is also discussed.

One way to visualize this structure is parallel arrangement

of sheets with edge-shared BO6 octahedral with the A ca-

tions occupying the interlayer regions of space. Finally,

complex oxides containing V and W are also considered.

Table 8 contains a listing of these oxides. It is interesting to

note that some of the newer studies (e.g., Entry 4, Table 8)

are rooted in early investigations dating back to 1981.

Thus, Bi2WO6 (as well as Bi4Ti3O12) were examined [334]

within the context of shrinking Eg values of oxide semi-

conductors. Both these compounds have Bi2O2 layers, the

former with WO4 layers (comprised of corner-shared WO6

octahedra) and the latter with double perovskite layers of

composition Bi2Ti3O10. These structures are distorted from

pure tetragonal symmetry. Exfoliation of layered rutile and

perovskite tungstates of the generic formula, HMWO6

(M = Nb,Ta) and H2W2O7, has been reported [382]. The

layered perovskite, La2Ti2O7 was sensitized to visible light

by Cr or Fe doping and used for photocatalytic hydrogen

production from water [383].

10 Semiconductor alloys and mixed semiconductor

composites

The distinction between the two classes of materials con-

sidered in this section pertains to the presence or absence of

mixing at the molecular level. Thus in alloys, solid solu-

tions of two or more semiconductors are formed where the

lattice sites are interspersed with the alloy components.

Semiconductor alloys, unlike their metallic counterparts,

have a much more recent history and their development

driver has been mainly optoelectronic (e.g., solid-state la-

Table 6 Other ternary oxides with the general formula, ABO3,a that have been examined from a water photoelectrolysis perspective

Entry

number

Oxide Energy band gap,

eV

Comments Reference(s)

1 FeTiO3
b 2.16 Unstable with leaching of iron observed during photoelectrolysis. [323]

2 YFeO3 2.58 N-type semiconductor with an indirect optical transition. [324]

3 LuRhO3 ~2.2 Distorted perovskite structure with p-type semiconductor behavior. [325]

4 BaSnO3 ~3.0 Estimated to be stable toward photoanodic decomposition

over a 0.4–14 pH range.

[85]

5 CaTiO3 ~3.6 – [85]

6 KNbO3 ~3.1 See next section. [85]

7 Ba0.8Ca0.2TiO3 ~3.25 – [85]

8 KTaO3 ~3.5 Optical to chemical conversion efficiency of ~6% reported. See next

section.

[326]

9 CdSnO3 1.77 Band-edges not suitably aligned for HER or OER. [327]

10 LaRhO3 1.35 See above. [327]

11 NiTiO3
c ~1.6 N-type semiconductor crystallizing in the illmenite structure. [328–330]

12 LaMnO3 ~1.1 A p-type semiconductor. [331, 332]

a Not all the oxides in this compilation have the perovskite structure
b Other iron titanates: Fe2TiO4 (Eg = 2.12 eV) and Fe2TiO5 (Eg = 2.18 eV) also examined
c ‘‘Band gap’’ estimated for the transition from the mid-gap Ni2+(3 d8) level to the CB. Compound can be regarded as NiO ‘‘doped’’ TiO2
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ser) applications. In mixed semiconductor composites, on

the other hand, the semiconductor particles are in

electronic contact but the composite components do not

undergo mixing at the molecular level.

Solid-solutions involving oxide semiconductors that

have been examined include TiO2–MnO2 [384], ZnO–CdO

[384], TiO2–MO2 (M = Nb, Ta) [385], TiO2–In2O3 [42],

TiO2–V2O5 [41], and Fe2O3–Nb2O5 [384]. Tungsten-based

mixed-metal oxides, WnOmMx (M = Ni, Co, Cu, Zn, Pt,

Ru, Rh, Pd and Ag) have been prepared using electrosyn-

thesis and high-throughput (combinatorial) screening [386]

but it is not clear how many of these compounds are true

alloys (rather than mixtures). An interesting oxide alloy

with lamellar structure, In2O3(ZnO)m, has been reported

[387] with photocatalytic activity for HER in an aqueous

methanol and OER in an aqueous AgNO3 solution. This

alloy consists of layers of wurtzite-type ZnO slabs inter-

spersed with InO3 lamella; the band gaps of In2O3(ZnO)3

and In2O3(ZnO)9 are 2.6 eV and 2.7 eV respectively [387].

The incentive for using mixed semiconductors derives

from the possibility of securing interparticle electron

transfer and thus mitigates carrier recombination. For

example, the conduction band of WO3 lies at a lower energy

(relative to the vacuum reference level) than TiO2 [388,

389]. Thus, in a TiO2–WO3 composite, the photogenerated

electrons in TiO2 are driven to WO3 before they have an

opportunity to recombine with the holes in the TiO2 particle.

Other examples illustrative of this approach were discussed

earlier in this chapter and include CdS–TiO2 [390] and

CdS–K4Nb6O17 [351]. Other examples of mixed semicon-

ductors include TiO2–LaCrO3 [391] CdS–LaCrO3[332],

Fe2O3–TiO2 [392], and Cu2O–TiO2 [393]. However, not all

these composites have been examined from a water photo-

splitting perspective. Note that a bilayer configuration of the

Table 7 Studies on tantalate and niobate photocatalysts for the splitting of water.a

Entry

number

Compound

formula

A

cation(s)

B

cation(s)

Comments Reference(s)

1 Ta2O5 – – Both crystallized and mesoporous samples studied and

in one case, (Ref. 337), NiO co-catalyst was used.

[336, 337]

2 ATaO3 Li, Na, K – Excess alkali cation enhances catalytic activity. Co-

catalysts not found to be essential although NiO was

also used in addition in some studies.

[338–342]

3 A(In1/3B1/3M1/3)O3 Ba Pb, Sn Visible light photocatalysts studied with a band gap

engineering strategy based on electronegativity of the

B metal component.

[343]

4 A2M2O7
b Sr – Have layered perovskite structure. Samples with both

Ta and Nb also studied. Strontium niobate compound

is ferroelectric at room temperature. In contrast, the

tantalum analog is paramagnetic.

[322, 344–346]

5 ANb2O6 Ni, Co, Zn – See text. [341, 347]

6 ATa2O6 Mg, Ba, Sr – Orthorhombic structure used with NiO co-catalyst to

enhance photocatalyst activity.

[338, 348]

7 A2BNbO6
c Sr Fe – [349]

8 A3BNb2O9 Sr Fe – [349]

9 A4Nb6O17 K, Rb – Perhaps the most studied of the niobates. NiO co-

catalyst used in some cases as was aqueous methanol

solution. Composites with CdS also studied.

[350–355]

10 AB2Nb3O10 K, Rb, Cs Ca, Sr, Pb Layered perovskite structure. [356–359]

11 A2B2Ti3-xNbx O10 K, Rb, Cs La Partial substitution of Ti with Nb leads to a decrease in

the negative charge density of the perovskite sheets.

[360]

12 A3Ta3Si2O13 K – Pillared structure with TaO6 pillars linked by Si2O7

ditetrahedral units.

[361]

13 A2BTa5O15 K Ln Used with NiO co-catalyst. The Pr and Sm compounds

show high activity.

[362]

14 ATaO4 In – Crystallizes in the monoclinic wolframite-type

structure, like the FeNbO4 compound (see text).

[363]

15 A2Nb4O11 Cs – Structure consists of NbO6 and NbO4 octahedra. [364]

a Also see Refs. [66, 365–371]
b Belongs to the series AnMnO3n+2 with A = Ca, Sr, La and M = Nb or Ti. The Sr2Nb2O7 structure (Entry 3), for example, is the reduced

formula of Sr4Nb4O14 with n = 4 above
c The Sr1.9Fe1.1NbO6 compound was also studied here
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two semiconductors is not fundamentally different (at least

from an electron transfer perspective) than a suspension

containing mixed semiconductor particles (composites) in

electronic contact.

11 Photochemical diodes and twin-photosystem

configurations for water splitting

Photochemical diodes [53, 394]can be either of the Scho-

ttky type, involving a metal and a semiconductor, or a p–n

junction type, involving two semiconductors (which can be

the same, i.e., a homojunction or different, a heterojunc-

tion). Only the latter type is considered in this section

involving two irradiated semiconductor/electrolyte inter-

faces. Thus n-TiO2 and p-GaP crystal wafers were bonded

together (through the rear Ohmic contacts) with conductive

Ag epoxy cement [394]. The resultant heterotype p–n

photochemical diode was suspended in an acidic aqueous

medium and irradiated with simulated sunlight. Evolution

of H2 and O2 was noted, albeit at a very slow rate [394].

This type of device has been contrasted [394] with a

series connection of a photovoltaic p–n junction solar cell

and a water electrolyzer. Unlike the latter which is a

majority carrier system (i.e., the n-side of the junction is

the cathode and the p-side becomes the anode), in a

photochemical diode, minority carriers (holes for the

n-type and electrons for the p-type) are injected into the

electrolyte. This distinction translates to certain advantages

in terms of the overall energetics of the solar energy

conversion system; see [394] for more details.

Since this original work in 1977, another study has

appeared combining p-GaP and n-Fe2O3 [63]. Co-catalysts

(RuO2 on the n-Fe2O3 surface and Pt on the p-GaP surface)

served to enhance H2 and O2 evolution from seawater [63].

The p–n photoelectrolysis approach [53, 394] combines a

n-type semiconductor photoanode and a p-type semicon-

ductor photocathode in an electrolysis cell (Fig. 2c). The

pros and cons of this twin-photosystem approach (which

mimicks plant photosynthesis) were enumerated earlier in

this article. Table 9 provides a compilation of the semi-

conductor photocathode and photoanode combinations that

have been examined. Combinations involving n-WSe2,

n-MoSe2, n-WS2, n-TiO2, p-InP, p-GaP and p-Si semi-

conductor electrodes have been described [74].

In another interesting variant drawn from early work

[396], a semiconductor/redox electrolyte/semiconductor

(SES) configuration was deployed as a photoanode. Thus this

SES structure consisted of single crystal wafers of n-CdS and

n-TiO2 separated by a thin layer of NaOH, sodium sulfide

and sulfur. The inside wall of TiO2 was coated with Pd to

mediate electron transfer between n-TiO2 and the sulfide-

polysulfide redox electrolyte. It was shown [396] that the

SES photoanode operated in conjunction with a Pt counter-

electrode and 1 M NaOH electrolyte could evolve H2 and O2

Table 8 Miscellaneous multinary oxides for the photodecomposition of water

Entry

number

Oxide

semiconductor(s)

Energy band

gap(s)a, eV

Comments Reference(s)

1 Cd2SnO4, CdIn2O4

and Cd2GeO4

2.12 (indirect), 2.23

(forbidden) and 3.15

(indirect)

Found to be unsuitable as electrodes in

photoelectrolysis cells.

[372]

2 ZnFe2O4 ? HER observed by visible light irradiation of H2S solution. [373]

3 BiVO4 2.3 Ag+ used as electron scavenger and photocatalytic

OER observed.

[374]

4 Bi2W2O9, Bi2WO6

and Bi3TiNbO9

3.0, 2.8 and 3.1 Structure consists of perovskite slabs interleaved

with Bi2O2 layers.

[375]

5 AgVO3, Ag4V2O7

and Ag3VO4

? Only Ag3VO4 evolves O2 in aqueous AgNO3 solution

(with Ag+ as electron acceptor) under visible

light irradiation.

[376]

6 ACrO4 (A = Sr or

Ba)

2.44 and 2.63 The Sr compound shows much lower activity than

the Ba counterpart for HER in aqueous methanol.

[377]

7 CuMnO2 1.23 Photocatalytic HER observed in H2S medium. [378]

8 PbWO4 ? Has tetragonal structure. Used with RuO2 co-catalyst for water

photosplitting with a Hg–Xe lamp as radiation source.

[379]

9 CuFeO2 ? Photocatalytic water splitting observed under visible

light irradiation.

[366, 380,

381]

10 InVO4 1.8 eV Photocatalytic water splitting with or without NiO

in electronic contact observed under visible light irradiation.

[260]

a Values for Eg are listed in the order of appearance of the corresponding oxide compound in column 2
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without external bias. The OER occurs on the n-TiO2 surface

and HER occurs on the Pt counterelectrode surface.

12 Concluding remarks

The use of irradiated oxide semiconductor-liquid interfaces

for hydrogen generation is now a mature field of research.

Indeed, impressive results have been obtained at the labora-

tory scale over the past three decades and a myriad of new

oxides are being continually discovered. On the other hand,

much needs to be done to improve the H2 generation effi-

ciencies. The photoelectrolysis process must be engineered

and scaled up for routine practical use. In this regard, oxide

semiconductors appear to be particularly promising, espe-

cially from an environmental and process economics per-

spective. While interesting chemistry, physics, and materials

science discoveries will continue to push this field forward, in

the author’s opinion two types of R&D will be crucial: the use

of combinatorial, high throughput methods for photocatalyst

development and innovations in reactor/process engineering

once efficiencies at the laboratory scale have been optimized

at a routinely attainable ~10% benchmark. Only then will the

long sought after goal of efficiently making H2 from sunlight

and water using this approach be realised.
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